
APPENDIX

BAYESIAN REGRESSION ANALYSIS FOR YIELD-RESPONSE EXPERIMENTS

A. Nature of the Analysis

The purpose of this appendix is to describe how the observations
obtained from a dose-response experiment can be modeled using Bayesian
regression analysis. A Bayesian approach is necessary to provide inputs
in a form appropriate for making a decision regarding an economically
efficient level of environmental regulation.

Consider the following "simple normal linear" regression model
[Zellner (1971)]:

(A.1)

k = 1, 2, ..., n, with the error term (Ed) being independently normally
distributed with zero mean and constant variance a2, [N(0,a2>j. Here
the denote the level of pollutant applied to the kth plot of the

 and denotes the corresponding observed crop yield for that
plot.
a2 of the regression model are viewed as random variables, rather than

In keeping with the Bayesian approach, the parameters, a, B, and

as unknown constants.

Assume for purposes of illustration that no prior information is
available concerning the parameters of the regression model. In
particular, not even the sign of the slope B of the regression (or yield
response) function is assumed to be known. We are allowing for the
possibility, a priori, that crop yield Y and pollutant concentration X
have a positive association. Formally, it is mathematically convenient
to assume that a, B, and log a are uniformly and independently
distributed, a priori. Such a "diffuse" prior probability distribution
has probability density function

(A.2)

We wish to estimate the mean yield Yh corresponding to setting a
pollutant concentration standard Xh. For convenience, express this mean
yield Yh as a fraction, say, of the mean yield Y1o associated with the
current pollutant level that is,
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The yield ratio (3) can be reexpressed as

(A.4)

It is assumed that the current mean yield Y is known, so that by (4), the
yield ratio is simply a
yield-response function.

linear transforgation  of the slope 6 of the

We now obtain the posterior probability distribution of the yield
ratio given the sample of n observations
generated by the experiment. The slope 6 of

k = 1, 2, ..., n}
function

has posterior probability distribution of the Student t form;
specifically,

(A.5)

is a random variable having the Student t distribution with n-2 degrees
of freedom. Here

and

and

with

(A.6)

(A.7)

(A.8)

From the posterior distribution of the slope B of the yield
response function, it follows that the posterior distribution of the
yield ratio Th is also the Student t form; specifically,

(A.9)

is a random variable having the Student t distribution with n-2 degrees
of freedom. Here
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(A.10)

and

(A.11)

This result concerning the form of posterior probability distribution of
percent yield reduction, enables us to make probability statements
(e.g., to determine the probability that is greater than a certain
specified value, given our sample). In particular, the posterior
probability distribution of Th will be used to compute expected benefits
in the decision-making problem of setting a standard on pollutant
concentration X.

B. Example: cotton-ozone data

We now demonstrate the application of the Bayesian regression
methodology for estimating yield response functions. Data are taken
from an agronomic experiment involving cotton plants which were exposed
to different ozone concentrations. The 12 pairs of observations (i.e.,
n = 12) of mean seasonal ozone concentration X (ppm) and cotton yield Y
(grams) per plot are listed in Table A1.

Employing the simple normal linear regression model with the diffuse
prior probability distribution, (A.2), assumed for the parameters c, 8, and
U, the following statistics were obtained:

c = 1098.39 g, 6 = -3707.99 g/ppm, = 288.52 g/ppm (A.12)

The slope, B, of the cotton-ozone dose-response function has posterior
probability distribution of the Student t form; namely,

= [6 - (-3707.99)] / 288.52

has a Student t distribution with n-2 = 10 degrees
Al shows the posterior probability density function
prior distribution allowed for the possibility that

(A.13)

of freedom. Figure
for B. Although the
B is positive (i.e.,

a positive association between cotton yield and ozone concentration), a
posteriori the probability that B is positive is virtually zero (in
fact, smaller than 0.005%).

We now wish to estimate the percent yield ratio for various levels
of ozone concentration relative to a current mean yield of
838.83 g corresponding a current ozone concentration of 0.07 ppm.
convenience, the value of Y was ob,tained  by using the
regression coefficient estymates o and B, whereas the form of the
posterior distribution of the yield ratio Th, (A.9), requires that Y be
known. Taking the case of ozone concentration = 0.06 ppm, (A.10) and
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TABLE A1

Mean Seasonal Ozone Concentration and Cotton Yield by Plot

Ozone is in ppm. Cotton yield is in grams.

Plot Number Ozone Concentration Cotton Yield
k 'k 'k

1 0.018 ppm 1030
2 0.032 1030
3 0.046 988
4 0.043 936
5 0.070 781
6 0.073 868
7 0.113 633
8 0.107 600
9 0.144 647

10 0.138 573
11 0.179 409
12 0.186 456
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Figure A1

POSTERIOR DISTRIBUTION OF COTTON SLOPE

118



Figure A2

POSTERIOR DISTRIBUTION OF COTTON YIELD RATIO
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(A.11) give:

= 1.0331, S(Th) = 0.003440.

Thus the standardized yield ratio

(A.14)

- 1.0442)/(0.003440) (A.15)

has a Student t distribution with 10 degrees of freedom. Figure A2
shows the posterior probability density function for note, for
instance, that falls between 1.0365 and 1.0519 with chance a
posteriori.
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REFERENCES

We thus disregard the abundant sources of uncertainty residing in
the economic propositions and empirical applications that support control
benefits assessments.

On the other hand, Smith and Vaughn (1980) and Kopp and Smith
(1982) provide some empirical support on the cost side for the premise.
In their studies of the costs of pollution control in the iron and steel
industry, they found their cost estimates to be very sensitive to the
engineering details embedded in their models.

See Crocker (1982) for more details. Adams, et al. (1982)
employed a price endogenous, quadratic programming model to examine the
economic impact of ambient oxidants upon the 1976 production of 14
annual crops in four southern California subregions. For all but two
the 56 possible region-crop combinations, the differences between
estimated and actual levels of crop production were substantially less
than ± 10 percent. In 29 of the 56 combinations, the predicted
percentage yield change inclusive of the economic reactions differed
from the triggering percentage yield change by a factor of 2 or more.
Many, perhaps most, of these latter differences are accounted for by the
propensity of farmers to take advantage of changes across crops in most
favorable production opportunities. The errors in predicting ultimate
yield responses that neglect of farmers' economic reactions will
introduce can be rigorously shown to be inversely dependent on the
absolute curvature of the production possibility surfaces and the price
flexibility of crop supplies.

The pollution exposure (dose) in each of the yield response
expressions was measured as a seven-hour seasonal mean concentration of
ozone. The seven-hour period is from 9:00 a.m. to 4:00 p.m., the period
in which stomata1 activity and hence plant sensitivity to pollution is
greatest. In order to transform the mean seven-hour dose to the same
basis as the SNAAQS, ambient ozone is assumed to be log-normally
distributed. Thus, for example, a seasonal seven-hour concentration of
.07 ppm is treated as being a SNAAQS concentration of 14 ppm.

In accordance with expression (2) of the text, the expected
payoffs of the alternative standards are the E[W(i)] - E[W(o)] less the
costs of implementing the alternatives. USEPA's Office of Air Quality
Planning and Standards (1979) has estimated the costs of implementing a
range of alternative ozone standards similar to those we consider at
$3 billion to $9 billion annually. Crocker (1982) suggests that total
agricultural benefits from all classes of improved air quality may not
exceed 10-20 percent of total air pollution control benefits. If cost
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responsibilities are assigned to agriculture in accordance with its
supposed share of these total benefits, then the expected payoffs for the
0.10 ppm and the 0.08 ppm standards are positive. However, about half the
gain in surplus associated with going from the 0.12 ppm standard to the
0.08 ppm standard is due to the estimated increase in corn yields. We have
recently experimented with a quadratic form for the corn yield response
function and have found that yield responses and consequent changes in
economic surplus are somewhat lower in absolute magnitude than the corn
surplus used to arrive at Table 4. In particular, with a quadratic yield
response function for corn, Table 4 becomes:

Ambient Standard Expected Surplus Change in Expected Surplus
E[W(i)] E[W(i)] - E[W(o)]

0 (0.12 ppm) 51.3 ---
1 (0.10 ppm) 54.6 3.3
2 (0.08 ppm) 57.8 6.5
3 (0.14 ppm) 47.5 -3.8

More significantly, the density functions for the quadratic version of
Figure 2 now display no overlap. This suggests that biological model
uncertainty may be as important a factor as sample size (precision) in
the role that yield response information plays in benefit-cost analysis.

The policymaker would have to possess a loss function putting
extremely heavy emphasis on Type I error in order to be very concerned
with the overlap between the 0.10 and 0.08 surplus distributions for
corn and wheat.

See Adams and Crocker (1982) for detail on the features of these
differential yield responses that are of particular interest to
economists. If research resources are limited, the decision problem of
which crops are deserving of additional yield response observations
resembles a portfolio problem. The crops are the kinds of securities
and the observations are the number of units of each kind of security to
be held.
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